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A detailed analysis of the errors involved in computing the interface curvature from vol-
ume fraction distributions using a height function technique is presented. An improved
version of the height function technique is proposed, based on introducing a correction
of the height function discretization error estimated from the local osculating spheres at
interface points. By using this error correction and an appropriate discretization of the par-
tial derivatives of the height function, a substantial improvement in the accuracy of the
interface curvature computation can be efficiently achieved.
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1. Introduction

Increasingly, in recent years, the height function (HF) technique has been used to compute interface curvature from
volume of fluid (VOF) fractions [4,6,9,1,10,14–16,18,22] because of its relatively easy implementation, good computa-
tional efficiency and second-order accuracy. In this technique, the interface curvature is calculated from the derivatives
of the fluid heights constructed by integrating the discretized VOF function, F, along the direction of the largest compo-
nent of the interface normal vector. Recent improvements of the HF technique include the development of a systematic
approach for calculating curvature from volume fractions which is accurate to any order [19], the extension to non-uni-
form rectangular grids [7], and the development of a height function technique for computing curvature from the level
set function [20].

In this work, a detailed analysis of the errors involved in the HF technique is carried out in an attempt to minimize them
and increase the accuracy of curvature computation. The paper is organized as follows. The HF technique incorporating the
adaptive stencil proposed in [10] and improved discretization of the partial derivatives of the HF proposed in [14] is briefly
described in Section 2. Then, a detailed assessment of the errors involved in the HF technique is carried out in Section 3. Fi-
nally, an improved version of the HF technique, based on a simple error correction model, is presented in Section 4 followed
by a comparison of the results with those obtained with previous versions (Section 5).

2. Height function technique

Let us consider an interfacial cell, ði; j; kÞ, where 0 < F < 1, in which the absolute value of the z component of the interface
normal vector, n, is largest (at this point of the study n will be obtained from the gradient of the volume fraction function, $F,
. All rights reserved.
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Fig. 1. j-stencil for height function calculation.
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using the method of Youngs [24]). Using a 3� 3 stencil centered at cell ði; j; kÞ (Fig. 1) on the xy plane (referred to hereafter as
the j-stencil), a local distribution of a height function, H, is calculated as follows:
HVOF
r;s ¼

Xtup

t¼�tdown

F�iþr;jþs;kþth; for r ¼ �1;0;1 and s ¼ �1; 0;1; ð1Þ
where tdown and tup are adaptatively adjusted from 0 to 3 as indicated in [10], h is the cell size and F� is a modified distribu-
tion of the volume fraction, F, which is forced to follow a local monotonic variation along the z direction [10]. Note that the
3� 3� ðtdown þ tup þ 1Þ stencil surrounding cell ði; j; kÞ is adaptively adjusted from 3� 3� 1 to 3� 3� 7 cells, depending on
the local grid resolution (a detailed description of the adaptive stencil can be found in [10]). The superscript VOF is used in
the height function of Eq. (1) to differentiate it from the exact and approximate height functions defined in the following
sections. For two-dimensional problems, the above procedure can be derived in a straightforward way, and only specific con-
siderations needed for such geometries will be mentioned.

The curvature of the interface is determined from the height function H as
j ¼
Hxx þ Hyy þ HxxH2

y þ HyyH2
x � 2HxyHxHy

1þ H2
x þ H2

y

� �3=2 ; ð2Þ
where the partial derivatives of H are obtained using the finite difference formula proposed by López et al. [14], which con-
siderably improves the curvature accuracy in three-dimensional problems. For example, the derivatives Hx and Hxx (as in the
y-direction) are obtained as [14]
Hx ¼ ½cðH1;1 � H�1;1Þ þ H1;0 � H�1;0 þ cðH1;�1 � H�1;�1Þ�=2hð1þ 2cÞ; ð3Þ
Hxx ¼ ½cðH1;1 � 2H0;1 þ H�1;1Þ þ H1;0 � 2H0;0 þ H�1;0 þ cðH1;�1 � 2H0;�1 þ H�1;�1Þ�=h2ð1þ 2cÞ; ð4Þ
where the ‘‘smoother” parameter c is defined as
c ¼
0:0 if h < 0:8 rad
0:2 otherwise;

�
ð5Þ
with h ¼ arccos½maxðjnxj; jnyj; jnzjÞ�. Note that a constant value of c equal to 0.0 produces a standard second-order finite dif-
ference approximation, and that the smoothing can only be applied to 3D cases [14]. The cross derivative Hxy is calculated as
Hxy ¼ ðH1;1 � H1;�1 � H�1;1 þ H�1;�1Þ=4h2
: ð6Þ
3. Assessment of errors in the height function technique

The errors involved in computing the interface curvature from volume fractions using a height function technique mainly
arise from discretization of the height function and its partial derivatives. Another source of errors that may compromise
accuracy is the initialization of the volume fraction distribution. To reduce initialization errors, we use the accurate proce-
dure described in [14], with nsc ¼ 16 (n2

sc in 2D and n3
sc in 3D are the numbers of sub-cells into which every interfacial cell is

subdivided to compute the initial F distribution), and the routines supplied in [25] (see also Ref. [13]).
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3.1. Height function discretization error

We will first consider the circular interface of Fig. 2, with radius R ¼ 1 and center of curvature located at ðx; yÞ ¼ ðA;0Þ, and
assume that the largest component of the interface normal vector at x ¼ 0 is along the y axis, so that �R=

ffiffiffi
2
p

< A < R=
ffiffiffi
2
p

. For
a given grid with cell size h, the error introduced when using a discretized height function to define the location of the inter-
face at x ¼ 0 is given by
Fig.
n ¼ Hh � Hexact; ð7Þ
where Hexact ¼ ðR2 � A2Þ1=2 is the exact height function at x ¼ 0 and Hh is the approximate height function for the discrete
column of size h aligned with the y-axis,
Hh ¼ 1
h

Z h=2

�h=2
½R2 � ðx� AÞ2�1=2 dx: ð8Þ
Fig. 3(a) shows the increase in the height function discretization error, jnj, obtained analytically for different grid cell sizes,

with an increasing angle between the interface normal vector and the y axis, h ¼ arccos jnyj ¼ arccos ðR
2�A2Þ1=2

R . The error

jHVOF � Hexactj has also been computed at all the grid cells crossed by the circular interface, centered in a domain of size
82, and represented by open circles in Fig. 3(a). The angle h is now defined as h ¼ arccos½maxðjnxj; jnyjÞ�, where the interface
Fig. 2. Approximate height function calculation for a circular interface with R = 1.

3. Height function errors as a function of h for different grid resolutions: (a) circular interface with R = 1 and (b) spherical interface with R = 2.



Fig. 4. Interface curvature errors obtained from the approximate and exact height function distributions, Hh and Hexact, using standard second-order finite
difference approximations (c = 0 in Eqs. (3) and (4)), with a grid cell size h = 0.05: (a) circular interface of radius unity, (b) spherical interface of radius 2 and
(c) detailed results of the 3D case obtained with different grid sizes.
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orientation is obtained using Youngs’ method [24]. Note that the small differences between the two errors represented in
Fig. 3(a) are only due to the errors introduced in the volume fraction initialization procedure and in the interface orientation
calculation.

A similar analysis can be made in three dimensions (3D), considering a spherical interface of radius R and center of cur-
vature located at ðA;B;0Þ, and assuming that, at x ¼ 0 and y ¼ 0; jnzj > jnxj and jnzj > jnyj, so that the conditions

�ðR2 � B2Þ1=2
=
ffiffiffi
2
p

< A < ðR2 � B2Þ1=2
=
ffiffiffi
2
p

and �ðR2 � A2Þ1=2
=
ffiffiffi
2
p

< B < ðR2 � A2Þ1=2
=
ffiffiffi
2
p

are satisfied. Writing the expression

equivalent to Eq. (8) in 3D is straightforward and Hexact ¼ ðR2 � A2 � B2Þ1=2 at x ¼ 0 and y ¼ 0.
Results for jnj similar to those of Fig. 3(a), obtained for R ¼ 2 and three different grid sizes, are depicted by solid lines in

Fig. 3(b). The angle h between the interface normal vector and the z axis at x ¼ 0 and y ¼ 0 is given by

h ¼ arccos jnzj ¼ arccos ðR
2�A2�B2Þ1=2

R . The error jHVOF � Hexactj, computed at all the interfacial cells from the initialized fluid vol-

ume fraction distribution for a spherical interface centered in a domain of 83, is also represented in Fig. 3(b). The angle h is
now defined as h ¼ arccos½maxðjnxj; jnyj; jnzjÞ� (note that the maximum angle formed between the height function direction
and the interface normal vector is of 0.955 rad (54.74�) in 3D and of 0.785 rad (45�) in 2D). As in the 2D case, the errors in-
crease as h increases, and the height function HVOF remains second-order accurate for any value of h provided that an accurate
initialization of the volume of fluid fraction is used.

Obviously, the height function discretization error could be reduced if the height function direction at every interfacial
cell were made coincident with the interface normal vector direction (in the case of a circular interface, this error would

be n ¼ 1� 1
2 1� h

2

� �2
h i1=2

� 1
h arcsin h

2). However, this would not be a simple task when a fixed Cartesian grid is used. A simpler

procedure that significantly reduces the effect of the height function discretization error on curvature accuracy, and which is
easy to implement, is proposed in Section 4.

3.2. Interface curvature errors

The interface curvature errors obtained from the approximate Hh distribution, using standard second-order finite dif-
ference approximations (c ¼ 0 in Eqs. (3) and (4)), for h ¼ 0:05 and circular and spherical interfaces, are represented in
Fig. 4(a) (solid line) and Fig. 4(b) (blue shaded area), respectively. In order to evaluate separately the influence of the dis-
cretization error of the partial derivatives of the height function on the interface curvature accuracy, the curvature error
obtained from Hexact (dashed line in Fig. 4(a) and grey shaded area in Fig. 4(b)) are also represented in the figure (results
similar to those of Fig. 4(b) are also represented in Fig. 4(c) for different grid resolutions).1 The variable width of the blue
and grey shaded areas in Fig. 4(b) and (c) are due to the different values that the lowest and intermediate components of the
interface normal vector can take for a given h value. Note that the discretization errors of the derivatives of the height func-
tion for highly inclined interfaces in 3D make the curvature errors for the highest value of h about one order of magnitude
larger than those for low h values. Also note that for highly inclined interfaces in 3D (values larger than around of 0.7 rad)
1 For interpretation of references to color in Fig. 4, the reader is referred to the web version of this article.



Fig. 5. Interface curvature errors obtained from the height function distribution HVOF with a grid cell size h = 0.05, for a spherical interface of radius 2 (open
circles): (a) standard second-order finite difference approximations (c = 0 in Eqs. (3) and (4)) and (b) smoothed finite difference approximations (c from Eq.
(5)). The blue shaded areas denote the corresponding errors obtained from the approximate distribution Hh. (For interpretation of references to color in this
legend Fig. 5, the reader is referred to the web version of this article.)
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the discretization errors of the partial derivatives of the height function make the curvature errors obtained from the exact
height function Hexact even greater than those obtained from the approximate height function. Similar results are found for
other grid resolutions (see Fig. 4(c)). On the other hand, in 2D, and for the grid resolutions considered in this work, the cur-
vature errors obtained from Hexact were always lower than those obtained from the approximate height function for any va-
lue of h (as in the example of Fig. 4(a)).

Curvature errors in 3D are considerably reduced when the discretization of the partial derivatives of H proposed in [14] is
used. Fig. 5(a) and (b) shows the interface curvature errors obtained from the approximate height function given by the
equation equivalent to Eq. (8) in 3D (blue shaded areas) and from the volume fraction distribution (open circles), using,
respectively, c ¼ 0 and c given by Eq. (5) in Eqs. (3) and (4). Note that a considerable improvement in the curvature accuracy
for highly inclined interfaces is obtained when the smoothed approximations are used for the partial derivatives of H.

4. Proposed method to improve accuracy in the interface curvature computation

A further improvement in the interface curvature computation can be achieved if the approximate height function ob-
tained from the volume fraction distribution, HVOF, is corrected by subtracting the error n, defined as in Eq. (7), corresponding
to the local osculating spheres (circles in 2D) constructed at the interface points. This correction is motivated by the excellent
agreement observed in Fig. 3 between n, obtained analytically, and the error HVOF � Hexact. Although not in the context of the
HF technique, various authors have used a similar a priori prescription of underlying interface shapes (such as circles [3],
parabolas [17] and cubic splines [8,12,5]) in the curvature model. The possible advantages of using different interface shapes
in curvature correction will be investigated in future studies.

In 3D, the corrected local distribution of the height function at a given interfacial cell ði; j; kÞ is obtained as
HVOFð�Þ
r;s ¼

HVOF
r;s � nr;s; if h < 0:7 rad

HVOF
r;s ; otherwise;

(
ð9Þ
for r ¼ �1;0;1 and s ¼ �1;0;1 (in 2D, HVOFð�Þ
r ¼ HVOF

r � nr for any value of h). The limiting value of h in Eq. (9) is adopted be-
cause of the lower curvature accuracy obtained when the exact height function is used instead of HVOF for h values larger than
about 0.7 rad (Fig. 4(b) and (c)). The correction term nr;s is calculated as
nr;s ¼
2

jr;sh
2

Z h=2

�h=2

Z h=2

�h=2
1� jr;s

2
xþ nxðr;sÞ

� �2
� jr;s

2
yþ nyðr;sÞ

� �2
� 	1=2

dxdy� 2
jr;s

1� n2
xðr;sÞ � n2

yðr;sÞ

� �1=2
; ð10Þ
where the first term on the right hand side is the approximate height function, defined as in an equation equivalent to Eq. (8)
in 3D, and the second term is the exact height function of the osculating sphere of radius 2=jjr;sj (osculating circle of radius
1=jjr j in 2D) at the interface point (curvature jr;s is negative when the center of curvature lies in the fluid), with orientation
given by ðnxðr;sÞ;nyðr;sÞ;nzðr;sÞÞ. Note that the x and y coordinates of the osculating sphere center relative to the cell center
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ðiþ r; jþ s; kÞ (parameter A in Eq. (8) and in the 2D example of Fig. 2) can be expressed as � 2
jr;s

nxðr;sÞ and � 2
jr;s

nyðr;sÞ, respec-
tively. The integral in Eq. (10) is calculated using a 5-point Gauss–Legendre procedure, which provides sufficient accuracy,
instead of using an analytical procedure.

When the direction of the maximum component of the vector normal to the interface (the height function direction) does
not change over all the interface points of the j-stencil of Fig. 1 (a general occurrence, except in highly inclined interfaces),
the interface curvature and normal vector used to obtain the correction term nr;s are estimated from the local height function

distribution HVOF at the interfacial cell ðiþ r; jþ s; kþ tr;sÞ, with tr;s ¼ �signðnzÞ½intðH0;0=hÞ � intðHr;s=hÞ�, using standard sec-

ond-order finite difference approximations for the partial derivatives of HVOF. When the previous condition does not hold, the
interface orientation is obtained as nxðr;sÞ ¼ nxð0;0Þ þ rhj0;0=2 and nyðr;sÞ ¼ nyð0;0Þ þ shj0;0=2 (in 2D, nxðrÞ ¼ nxð0Þ þ rhj0), and the
curvature jr;s ¼ j0;0.

The extension of the proposed method to non-uniform rectangular grids, which is beyond the scope of this work, could be
accomplished by taking into account the approach recently proposed by Francois and Swartz [7].

In order to investigate the dependence of the proposed height function technique on the interface tracking scheme used,
we have implemented, following the idea proposed in [20], a version in which the height function is computed from the dis-
tance function to the interface, which may be useful in level set methods. In Appendix A we briefly introduce the expressions,
equivalent to Eqs. (1), (9) and (2), which define the corresponding local distribution of the height function obtained from the
distance function to the interface, HLS (Eq. (A1)), the corrected distribution HLSð�Þ (Eq. (A2)) and the curvature (Eq. (A3)),
respectively.
5. Discussion of results

5.1. Height function computed from VOF distribution

5.1.1. Static tests
Fig. 6(a) and (b) shows the curvature errors for circular and spherical interfaces, respectively, obtained from the height

function distribution HVOF and from the corrected distribution HVOFð�Þ. The notable improvement in the curvature computa-
tion accuracy achieved with the height function correction introduced in Eq. (9) can be observed by comparing the pictures
on the left and right hand sides of Fig. 6(a) and (b). The effectiveness of the proposed method can also be assessed by com-
paring the curvature errors obtained from the corrected distribution HVOFð�Þ (open squares) and from the exact distribution
Hexact (pictures at the right in Fig. 6(a) and (b)).

The global accuracy of the computed interface curvature is measured using the L1 and L1 error norms, defined as
EL1 ¼maxðjj� jexactjÞ; ð11Þ

EL1 ¼

Pn
i
jj� jexactj

n
; ð12Þ
where n is the number of interfacial cells. Tables 1 and 2 show, respectively, the errors obtained for a circle of radius unity
and for a one-dimensional cosine wave defined as in [4], with two different wavelengths, k, and an amplitude equal to 1 (the
interface curvature varies from ð2p=kÞ2 to �ð2p=kÞ2), in an 82 domain, using grid sizes of between 802 and 3202 cells. Table 3
shows the errors for a sphere of radius 2 in an 83 domain and grid sizes of between 403 and 1603 cells. In order to avoid
favorable situations and to obtain results that are representative of the possible situations with different relative alignments
and locations between grid and interface normals, the above error norms are averaged over 100 different cases obtained by
randomly changing the location of the fluid bodies in the domain (for example, when the spherical shape is centered in the
computational domain, c is taken from Eq. (5) and the distribution HVOFð�Þ is used, the maximum errors obtained for the
coarsest, intermediate and finest grids considered in Table 3 are, respectively, 7:47� 10�3;2:38� 10�3 and 4:86� 10�4, val-
ues which are considerably smaller than those presented in the table). It can be observed from Tables 1–3 that a considerable
improvement in accuracy is obtained both in the 2D and 3D cases when the curvature is calculated from the corrected height
function distribution HVOFð�Þ instead of HVOF. It should also be pointed out that the improvement observed for the cosine wave
cases of Table 2 is somewhat smaller than that observed in Table 1. This is due to the fact that the highest errors are produced
at the interface points of higher curvature, which correspond to values of h close to zero, for which, as can be observed from
Fig. 6(a), the improvement in accuracy achieved by using the corrected HVOFð�Þ distribution is lowest. This behavior is illus-
trated in Fig. 7, where the interface curvature errors obtained from the HVOF, HVOFð�Þ and Hexact distributions are represented as
a function of h, for a case with k ¼ 8 and h ¼ 0:05. The effectiveness of using the corrected HVOFð�Þ distribution can be clearly
observed from the figure. Note that the difference between the errors obtained using HVOF and HVOFð�Þ is greatest for interface
points with h values close to zero, a value at which jjj is maximum and equal to p2=16. As h approaches 0.67 rad, the inter-
face curvature rapidly decreases to zero, making the differences between both types of results progressively less relevant.
Nevertheless, this test also demonstrates the good performance of the proposed height function correction technique in
cases with variable interface curvature. When k ¼ 2, the interface curvature has a maximum value of p2, which makes



Fig. 6. Interface curvature errors obtained from the height function distribution HVOF (open circles; pictures at the left) and from the corrected distribution
HVOF(*) (open squares; pictures at the right), with a grid cell size h = 0.05: (a) circular interface of radius unity and (b) spherical interface of radius 2. Blue
solid line and shaded area in pictures at the left denote curvature errors obtained from Hh; dashed line and grey shaded area in pictures at the right denote
errors obtained from Hexact. (For interpretation of references to color in this legend Fig. 6, the reader is referred to the web version of this article.)

Table 1
Maximum and average curvature errors, EL1 and EL1, and convergence order, O, for a circular interface of radius unity in a domain of size 82 (averaged values
obtained over 100 random locations of the circle in the domain).

Grid cell size, h Curvature computed from HVOF Curvature computed from HVOFð�Þ

EL1 O EL1 O EL1 O EL1 O

0.1 8.43 � 10�3 5.00 � 10�3 3.12 � 10�3 1.94 � 10�3

2.1 2.0 2.3 1.9
0.05 1.91 � 10�3 1.22 � 10�3 6.33 � 10�4 5.04 � 10�4

1.9 2.0 1.8 1.9
0.025 5.24 � 10�4 3.04 � 10�4 1.80 � 10�4 1.31 � 10�4
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1=jmaxh relatively low and thus the smallest length scale to be poorly resolved for all the grid resolutions considered in
Table 2 (a similar observation was made in [4] for this test). Note that, in this case, the effectiveness of using HVOFð�Þ instead
of HVOF for improving the accuracy of curvature computation decreases as the grid becomes coarser and the interface more
poorly resolved, a trend which is more evident in the EL1 error.



Table 2
Maximum and average curvature errors, EL1 and EL1, and convergence order, O, for a cosine wave of different wavelengths and amplitude unity, in a domain of
size 82 (averaged values obtained over 100 random locations of the fluid body in the domain).

Grid cell size, h Curvature computed from HVOF Curvature computed from HVOFð�Þ

EL1 O EL1 O EL1 O EL1 O

Wavelength k ¼ 8
0.1 4:76� 10�4 1:18� 10�4 3:18� 10�4 8:81� 10�5

2.0 2.0 2.0 2.0
0.05 1:20� 10�4 3:00� 10�5 8:08� 10�5 2:23� 10�5

1.8 1.9 1.7 1.8
0.025 3:34� 10�5 8:03� 10�6 2:54� 10�5 6:47� 10�6

Wavelength k ¼ 2
0.1 1:29� 100 8:52� 10�2 1:29� 100 8:05� 10�2

0.5 1.4 0.5 1.5
0.05 8:87� 10�1 3:19� 10�2 8:83� 10�1 2:75� 10�2

2.6 2.4 2.8 2.5
0.025 1:43� 10�1 6:06� 10�3 1:30� 10�1 4:88� 10�3

Table 3
Maximum and average curvature errors, EL1 and EL1, for a sphere of radius 2 in a domain of size 83 (averaged values obtained over 100 random locations of the
sphere in the domain). The convergence orders are in parentheses.

Grid cell size, h Curvature from HVOF ðc ¼ 0Þ Curvature from HVOF (c from Eq. (5)) Curvature from HVOFð�Þ (c from Eq. (5))

EL1 EL1 EL1 EL1 EL1 EL1

0.2 6:86� 10�2 4:88� 10�3 1:28� 10�2 3:68� 10�3 1:33� 10�2 2:14� 10�3

(2.3) (2.1) (2.0) (2.1) (2.1) (2.1)
0.1 1:40� 10�2 1:12� 10�3 3:16� 10�3 8:82� 10�4 3:10� 10�3 4:90� 10�4

(2.1) (2.0) (1.9) (2.0) (1.8) (2.0)
0.05 3:27� 10�3 2:72� 10�4 8:49� 10�4 2:18� 10�4 8:60� 10�4 1:20� 10�4

Fig. 7. Interface curvature errors obtained from HVOF (open circles) and HVOFð�Þ (open squares) as a function of h for a cosine wave of wavelength 8 and
amplitude unity, in a domain of size 82, using a grid size h = 0.05. The results obtained from Hexact are depicted with a dashed line.
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The results presented in Figs. 5 and 6 reveal that the accuracy of the proposed HF technique in computing the interface
curvature mainly depends on the interface orientation and is relatively independent of the local volume fraction. This can be
more clearly seen in Fig. 8, in which the interface curvature errors obtained from the HVOFð�Þ distribution and using smoothed



Fig. 8. Interface curvature errors as a function of F for the case of Fig. 6(b). Results obtained for HVOF(*) and c given by Eq. (5).
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partial derivatives are represented as a function of the volume fraction for the case of Fig. 6(b). Note that, even for near-
homogeneous mixed cells (mixed cells with values of the volume fraction close to zero or one), there is no clear dependence
of the curvature error on F.

Regarding the efficiency of the proposed model, the use of the corrected height function distribution in 3D cases increases
the CPU time by about a 30% (the increase is considerably smaller in 2D), which is a reasonable cost given the increased accu-
racy achieved (all tests were run on a laptop with an Intel T9550 processor).
5.1.2. Surface tension-driven flow tests
The performance of the proposed technique in combination with a flow solver [10] has also been assessed using a static

inviscid spherical drop test [23] and a drop oscillation test. In both cases, zero gravity and the same test conditions of Ref.
[14] are assumed. The interface curvature at interfacial cell faces is obtained using the interpolation procedure described in
[14]. The errors involved in any interpolation procedure used to obtain the interface curvature at locations different from
interfacial cell centers will not be considered in this work.

Since the flow solver exactly balances the pressure gradient and surface tension force [6], any velocity field produced in
the static drop test is solely due to interface curvature errors, and so the curvature calculation becomes the relevant point. In
this test, a spherical drop of radius R ¼ 2, centered in a domain of size 83, is considered. The densities inside and outside the
drop are q1 ¼ 1 and q2 ¼ 0:1, and the surface tension coefficient r ¼ 73. The initial pressure and velocity are set equal to
zero in the whole domain. Three different grid sizes and a time step Dt of 0.001, which satisfies the capillary constraint given
by Dt 6 ½ðq1 þ q2Þh

3
=4pr�1=2 for all the grid resolutions considered, are used. The spurious currents are estimated by the

maximum velocity in the computational domain, jujmax.
Table 4 shows the jujmax values after 1 and 50 time steps, and the averaged jujmax value over the first 50 time steps, ob-

tained from the HVOF distribution using c ¼ 0:0 in Eqs. (3) and (4), and from the HVOF and the corrected HVOFð�Þ distributions
Table 4
Spurious currents in the inviscid static drop test. Results for the maximum velocity jujmax obtained with three different grid sizes and Dt ¼ 0:001.

Grid cell size, h jujmax at t ¼ Dt jujmax at t ¼ 50Dt Averaged jujmax over the first 50 time steps

Curvature computed from HVOF; standard partial derivatives ðc ¼ 0Þ
0.4 7:06� 10�3 1:42� 10�1 1:09� 10�1

0.2 4:42� 10�3 3:40� 10�2 3:67� 10�2

0.1 4:87� 10�3 8:30� 10�3 1:25� 10�2

Curvature computed from HVOF; smoothed partial derivatives (c from Eq. (5))
0.4 5:43� 10�3 1:62� 10�1 1:03� 10�1

0.2 2:50� 10�3 2:52� 10�2 2:45� 10�2

0.1 1:31� 10�3 2:91� 10�3 2:94� 10�3

Curvature computed from the corrected HVOFð�Þ; smoothed partial derivatives (c from Eq. (5))
0.4 5:00� 10�3 1:50� 10�1 9:40� 10�2

0.2 2:32� 10�3 2:03� 10�2 1:99� 10�2

0.1 1:24� 10�3 4:28� 10�3 2:45� 10�3



Fig. 9. Spurious currents in the inviscid static drop test. Results for the maximum velocity jujmax as a function of time, obtained with Dt = 0.001 and two
different grid sizes: (a) h = 0.2, (b) h = 0.1 and (c) h = 0.1 and a longer simulation time.
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using c obtained from Eq. (5), using grid sizes of between 203 and 803 cells. The increase in accuracy achieved by using
smoothed partial derivatives of the height function to calculate the curvature and the further improvement obtained when
the corrected HVOFð�Þ distribution is used can be observed from the table. The magnitude of the spurious currents decreases
with grid refinement, with a convergence of around first order after one time step and of almost third order after 50 time
steps. The improvement can be observed more clearly in the averaged error of the last column in the table, since the oscil-
lations of jujmax with time, shown in Fig. 9 for two different grid sizes, may make the comparison at certain instants less rep-
resentative, as occurs at t ¼ 50Dt when h ¼ 0:1. The asymptotic behavior of the spurious currents obtained for longer
simulation times and h ¼ 0:1 is shown in Fig. 9(c). When curvature is computed from the HVOFð�Þ distribution and using
the c values given by Eq. (5), it can be observed from the figure that jujmax oscillates around an average value of
1:42� 10�3, with a wavelength of around 130, and that the amplitude of the oscillation gradually decreases with time,
but more rapidly during the first 600 time steps. When using the HVOF distribution, jujmax oscillates with almost the same
wavelength and a slightly higher amplitude around an average value of 1:95� 10�3 when c given by Eq. (5) is used, and more
irregularly and around an average value of 7:55� 10�3 when c is taken as zero.

In the drop oscillation test we consider the oscillation with no external forces of a viscous drop, initially perturbed from its
spherical shape and centered in a domain of size 43. The radius of the initial interface surface is given by R ¼ R0½1þ gP2ðcos /Þ�,
where 0 6 / 6 p is the polar angle, R0 ¼ 1 is the radius of the spherical drop at equilibrium, g ¼ 0:01 is the amplitude of the
initial disturbance, and P2 is the Legendre polynomial of order 2. The densities inside and outside the drop are q1 ¼ 1 and
q2 ¼ 0:01, the corresponding viscosities are l1 ¼ 1� 10�2 and l2 ¼ 1� 10�4, and the surface tension coefficient is r ¼ 1.
The time step Dt ¼ 0:35½ðq1 þ q2Þh

3
=4pr�1=2 was used in all the simulations presented below [14]. The linear, irrotational

approximation for the angular frequency of the drop oscillation derived by Lamb [11] is given by
w2 ¼ 24r
R3

0½3q1 þ 2q2�
:

Fig. 10 shows the percentage error for the first oscillation period, T, defined as jT � T�j � 100=T�, where T� ¼ 2p=w, as a
function of grid size, obtained using the same three procedures and settings used in the static drop test. Besides the improve-
ment in accuracy achieved by using the smoothed discretization of the partial derivatives of HVOF, it can be observed that the
use of the proposed HVOFð�Þ distribution substantially reduces the error involved, especially for fine grids. The first oscillation
period obtained with the finest grid compares favorably with the value reported by Aulisa et al. [2] in their Table 5, which was
obtained from a 3D-axisymmetric computation. The results obtained in the same drop oscillation test but with l1 ¼ 5� 10�3

and r ¼ 0:5, computing the interface curvature from the corrected HVOFð�Þ distribution and using c given by Eq. (5), have also
been compared with those obtained from a 3D-axisymmetric computation by Sussman and Puckett [21] and Aulisa et al. [2].
For a grid cell size h ¼ 0:05, we obtain T ¼ 3:166 (the T� value obtained from Lamb’s theory is 3.152) with a convergence order
of 2.5, which compares favorably with the results reported in [21,2], obtained with an equivalent grid size.
5.2. Height function computed from the distance function to the interface

Fig. 12(a) shows the height function error jHLS � Hexactj, obtained analytically for different values of the distance from the
considered cell to a circular interface, /j (see Fig. 11), as a function of h. Note that the error not only depends on the interface



Fig. 10. Drop oscillation test. Error in the oscillation period as a function of grid size.

Fig. 11. Calculation of the approximate height function HLS from a distance function distribution, for a circular interface of radius R.
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orientation, but is also strongly dependent on the local value of /. The errors jHLS � Hexactj and jHLSð�Þ � Hexactj obtained for a
circle with R ¼ 1, centered in a domain of size 82, are represented in Fig. 12(b). The substantial error reduction and relative
independence of the error on / achieved when the corrected HLSð�Þ distribution is used can be observed from the figure.

The interface curvature error obtained using HLS and c ¼ 0:0 in Eqs. (3) and (4) is represented in Fig. 13(a) as a function of
h for a spherical interface of radius 2 centered in a domain of size 83. Note that the dependence of the curvature error on the
interface orientation is qualitatively different and less obvious than that observed when the height function is generated
from volume fractions. Successive improvements are achieved when smoothed finite difference approximations of the
height function (Fig. 13(b)) and the corrected HF distribution (Fig. 13(c)) are used. Although a more detailed analysis, similar
to that described in [14] for volume fraction distributions, should be carried out to determine the optimum value of c when /
is used to generate the height function, a preliminary analysis showed that using c ¼ 0:2 for any value of h produces better
results than those obtained using Eq. (5). A further improvement (Fig. 13(d)) can be obtained if Eqs. (A2) and (A3) are iter-
atively solved for j until the solution converges to a tolerance lower than 10�5 (less than 10 iterations are generally needed).
This iterative procedure is necessary due to the poor initial estimation of jr;s that is obtained from the height function de-
fined by Eq. (A1).

Table 5 shows results for the curvature errors similar to those presented in Tables 1 and 3 for circular and spherical inter-
faces, but obtained computing the height function from the distance function to the interface. It can be observed from Table 5
that the interface curvature computed from HLS does not converge and that convergence and a considerable improvement in
accuracy can be obtained when the corrected height function distribution is used. Note that the errors for curvature



Fig. 13. Interface curvature errors as a function of h obtained for a spherical interface with R = 2, centered in the domain, using a grid size h ¼ 0:05. Results
obtained from (a) HLS and c ¼ 0:0; (b) HLS and c ¼ 0:2; (c) HLSð�Þ and c = 0.2 after one iteration; (d) HLSð�Þ and c = 0.2 after eight iterations.

Table 5
Maximum and average curvature errors, EL1 and EL1, and convergence order, O, computed from the level set-based HLS and HLSð�Þ height function distributions,
for a circular interface of radius unity and a spherical interface of radius 2, in a domain of size 82 and 83, respectively (averaged values obtained over 100
random locations of the fluid bodies in the domain). Smoothed finite difference approximations with c ¼ 0:2 are used for all the 3D results.

Grid cell size, h Curvature computed from HLS Curvature computed from HLSð�Þ

EL1 O EL1 O EL1 O EL1 O

Circle
0.1 3:32� 10�2 1:11� 10�2 5:87� 10�3 2:70� 10�3

�0.3 0.1 1.2 1.5
0.05 3:95� 10�2 1:01� 10�2 2:52� 10�3 9:84� 10�4

�0.1 0.1 1.1 1.2
0.025 4:20� 10�2 9:34� 10�3 1:15� 10�3 4:21� 10�4

Sphere
0.2 5:36� 10�2 1:20� 10�2 2:13� 10�2 3:67� 10�3

�0.2 0.1 1.8 1.8
0.1 5:97� 10�2 1:12� 10�2 5:91� 10�3 1:06� 10�3

0.0 0.0 2.0 1.4
0.05 6:09� 10�2 1:11� 10�2 1:49� 10�3 3:99� 10�4

Fig. 12. Level set-based height function errors as a function of h: (a) analytical results for a circular interface and different values of the distance from the
cell to the interface and (b) results for a circular interface with R = 1, centered in a domain of size 82, obtained with a grid size h = 0.05. Only results that
satisfy the condition j/jj > j/jþ1j in the example of Fig. 11 are represented.
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computed from HLSð�Þ of Table 5 are larger than those of Tables 1 and 3, especially for fine grids. However, it should be men-
tioned that, when the exact values of nr;s are used in Eq. (A2), second-order accuracy is achieved and the errors obtained
using HLSð�Þ become very close to those of Table 1, and only slightly larger than those of Table 3. This means that a more accu-
rate calculation of the interface normal used in Eq. (A2) would probably lead the level set and VOF-based approaches of the
proposed height function technique to have a similar level of accuracy.

6. Conclusions

An analysis of the errors involved in the computation of interface curvature from volume fraction distributions has been
carried out, leading to an improved version of the height function technique. The improvement is based on introducing a
correction of the height function discretization error estimated from the local osculating spheres constructed at interface
points. The notable increase in accuracy of the interface curvature computation that can be efficiently obtained using the
proposed error correction and a smoothed discretization of the partial derivatives of the height function has been demon-
strated through several tests.
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Appendix A. Computation of curvature using a HF distribution obtained from the distance function

Consider a cell ði; j; kÞ that satisfies the condition /i;j;k/i;j;kþ1 < 0. Following considerations similar to those used in Section
2, an approximate local HF value at the cell can be computed from the / distribution using the following simple interpolation
(/ > 0 inside the fluid):
HLS
r;s ¼

/iþr;jþs;kðr;sÞ

/iþr;jþs;kðr;sÞ � /iþr;jþs;kðr;sÞþ1
h� ðk� kðr; sÞÞh; for r ¼ �1;0;1 and s ¼ �1; 0;1; ðA1Þ
where kðr; sÞ is the index between kþ 3 and k� 3, which satisfies the following conditions: signð/iþr;jþs;kðr;sÞÞ ¼ signð/i;j;kÞ and
/iþr;jþs;kðr;sÞ/iþr;jþs;kðr;sÞþ1 < 0. Note that the heights defined by Eq. (A1) are relative to the height kh of cell ði; j; kÞ.

As shown in Section 5.2, with the simple interpolation given by Eq. (A1) the interface curvature does not converge as the
grid becomes more refined. A similar finding was reported by Sussman and Ohta [20] for height functions generated from the
signed distance to the reconstructed VOF interface. These authors proposed a method that overcomes this drawback and per-
forms as well as the VOF height function approach to discretize curvature, claiming that it is even more accurate, especially
when two interfaces are in close proximity to each other. In this work, an expression equivalent to Eq. (9), which can be eas-
ily deduced in view of the 2D example of Fig. 11, is used to improve the accuracy of the local height function distribution:
HLSð�Þ
r;s ¼ v2

j2
r;s
� n2

xðr;sÞ þ n2
yðr;sÞ

� � v
jr;s
þ /iþr;jþs;kðr;sÞ


 �2
" #1=2

� 1� n2
xðr;sÞ � n2

yðr;sÞ

� � v
jr;s
þ /iþr;jþs;kðr;sÞ


 �2
" #1=2

������
������� ðk� kðr; sÞÞh;

ðA2Þ
where v ¼ 2 for 3D and v ¼ 1 for 2D. The first term on the right hand side is the exact height function referring to the center
of the osculating sphere of radius v=jjr;sj (note that jr;s is negative when the center of curvature lies in the fluid) at the inter-
face point closest to cell ðiþ r; jþ s; kðr; sÞÞ, where the interface orientation, given by nr;s � ðnxðr;sÞ;nyðr;sÞ;nzðr;sÞÞ, is obtained
using standard second-order finite difference approximations at cell ðiþ r; jþ s; kðr; sÞÞ. The second term is the height of
the center of the cell ðiþ r; jþ s; kðr; sÞÞ from the center of the osculating sphere (Href in the case of Fig. 11). When the max-
imum component of nr;s does not coincide with that of n0;0, the curvature jr;s ¼ j0;0.

When the HF is obtained from Eq. (A1) or Eq. (A2), the curvature of the interface is determined as
j ¼ signðnzÞ
Hxx þ Hyy þ HxxH2

y þ HyyH2
x � 2HxyHxHy

1þ H2
x þ H2

y

� �3=2 : ðA3Þ
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